Quantile Calculus and Censored Regression.

نویسنده

  • Yijian Huang
چکیده

Quantile regression has been advocated in survival analysis to assess evolving covariate effects. However, challenges arise when the censoring time is not always observed and may be covariate-dependent, particularly in the presence of continuously-distributed covariates. In spite of several recent advances, existing methods either involve algorithmic complications or impose a probability grid. The former leads to difficulties in the implementation and asymptotics, whereas the latter introduces undesirable grid dependence. To resolve these issues, we develop fundamental and general quantile calculus on cumulative probability scale in this article, upon recognizing that probability and time scales do not always have a one-to-one mapping given a survival distribution. These results give rise to a novel estimation procedure for censored quantile regression, based on estimating integral equations. A numerically reliable and efficient Progressive Localized Minimization (PLMIN) algorithm is proposed for the computation. This procedure reduces exactly to the Kaplan-Meier method in the k-sample problem, and to standard uncensored quantile regression in the absence of censoring. Under regularity conditions, the proposed quantile coefficient estimator is uniformly consistent and converges weakly to a Gaussian process. Simulations show good statistical and algorithmic performance. The proposal is illustrated in the application to a clinical study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Censored quantile regression with recursive partitioning-based weights.

Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recent...

متن کامل

Composite Quantile Regression for Nonparametric Model with Random Censored Data

The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the pro...

متن کامل

A Partially Linear Censored Quantile Regression Model for Unemployment Dura- tion

Censored Regression Quantile (CRQ) methods provide a powerful and flexible approach for the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models, where one (or more) of the explanatory vari...

متن کامل

Censored Quantile Regression with Covariate Measurement Errors

Censored quantile regression has become an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the central covariate effect from the meanbased hazard regression, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treatin...

متن کامل

Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors

Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of statistics

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2010